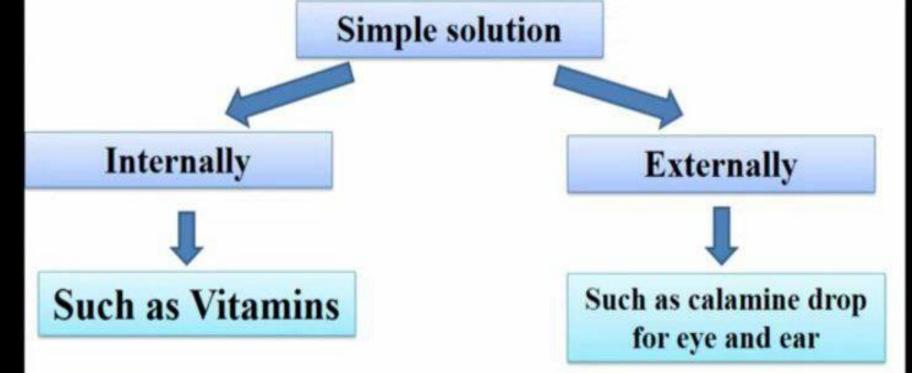
Ministry of Higher Education and Scientific Research Al-Mustaqbal University Faculty of Pharmacy

Pharmaceutical Calculation Lab - 5 -


Preparation of Simple Solution

Asst. Lec. Rusul Ahmed

Definition of Solution

• A *solution* is a <u>homogeneous</u> mixture composed of only one phase. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent.

• Simple solution = solute + solvent

- There is 2 types of solvents: aqueous(water) and nonaqueous solvent (any solvent other than water ex.ethanol)
- Solutions are used for their therapeutic effect internally or externally

Simple Solutions Preparation method:

- 1. Weigh the solids and place them in beaker
- Subtract the amount of liquid ingredients from the final volume and measure 3/4 (three quarters) of the remaining amount and dissolve the solid ingredients in this amount of liquid
- 3. Add the liquid ingredients
- Transfer the contents of the beaker into a measuring cylinder and complete the volume to the final required volume.
- Transfer the mixture to a suitable "Dispensing bottle". And attach a label with the following instructions:

Medication Labelling

- Name of patient
- Name of Phsyician
- Rx Date
- Use of drug
- Special warnings (ex. For external use only)

Rx	NaCl Amaranth solution		0.9 gm 2 ml	
	Mitte 50 mL			

$$\frac{0.9 g}{100 mL} = \frac{X}{50 mL} \rightarrow X = 0.45 \text{ g of NaCl}$$

 $\frac{2 mL}{100 mL} = \frac{X}{50 mL} \rightarrow X = 1 \text{ mL of amaranth solution}$

 $50mL \times 3/4 = 37.5 mL$ 37.5 mL - 1 mL(Amaranth solution) = 36.5 mL

Procedure:

- 1. Weigh 0.45gm of NaCl and put it in a beaker.
- 2. Dissolve the NaCl in 36.5ml of D.W.
- 3. Add 1ml of amaranth solution to the mixure.
- Convert the content of the beaker into measuring cylinder and complete the volume to 50ml by D.W.
- Transfer the content of the measuring cylinder into a wide mouth bottle and put the suitable label.

Examples	Rx	Glucose	10%
		NaCl	3%
		KCI	2%
		D.W.	q.s. 30ml
Calculation	<u>s:</u>		
$\frac{10 g}{100 mL} = \frac{10 g}{30}$	$\frac{X}{mL}$	• X = 3 g of	glucose
$\frac{3g}{100 \ mL} = \frac{3g}{30}$	$\frac{X}{mL}$	• X = 0.9 g	of NaCl
$\frac{2 g}{100 ml} = \frac{1}{20}$	X	→ X = 0.6 g	of KCl

30 mL / / - 0.0 100 mL

 $30 \text{ mL} \times 3/4 = 22.5 \text{ mL of D.W}$ (to be added first)

Procedure

- Weigh 3gm of glucose and 0.9 g of NaCl and 0.6 g of KCl by using balance then put it in a beaker.
- 2. Dissolve the active ingredient in 22.5mL of D.W.

Convert the content of the beaker into a measuring cylinder and complete the volume to 30ml by D.W.

4. Transfer the content of the measuring cylinder into wide mouth bottle and put a suitable label.

Ex.: In a certain preparation 40ml of glycerin was used to prepare 250ml solution. What is the % v/v of glycerin in this solution?

•
$$\frac{40 \ mL}{250 \ mL} = \frac{X}{100\%} \rightarrow X = 16\% \ v/v$$

